Pin It

Sono aperte le pre-iscrizioni alla ventesima edizione della Settimana Matematica, la storica manifestazione di orientamento organizzata dal Dipartimento di Matematica dell’Università di Pisa, inserita nel Piano Nazionale Lauree Scientifiche. La manifestazione è aperta a tutti gli studenti delle classi quarte e quinte secondarie di secondo grado, di qualsiasi istituto. Scadenza per le iscrizioni il 20 gennaio 2024.

La Settimana Matematica si svolgerà nei giorni 5-6-7 Febbraio 2024 presso il Dipartimento di Matematica dell’Università di Pisa, offrendo plenarie, esempi di lezioni universitarie e diversi laboratori. Per questa ventesima edizione sarà ospite Silvia de Toffoli, filosofa della matematica allo IUSS di Pavia, che interverrà con una plenaria dal titolo “Le certezze irraggiungibili della matematica”. Il programma completo e la descrizione dei laboratori, che riportiamo anche qui sotto, sono disponibili ai seguenti link:

Per partecipare alla Settimana Matematica è obbligatoria la pre-iscrizione online, da effettuarsi entro e non oltre il 20 Gennaio 2024, compilando il form accessibile al seguente link: link iscrizione
Tutte le informazioni sono a disposizione sulla pagina web dedicata, raggiungibile dalle info: INFO

Per qualsiasi ulteriore informazione è possibile scrivere Giulia Lisarelli al seguente indirizzo e-mail: giulia.lisarelli@unipi.it

LABORATORI SETTIMANA MATEMATICA 2024

Laboratorio 1: La ricerca della strada più corta e bolle di sapone

Qual è il modo più efficiente di collegare un certo numero di città in una pianura? Proveremo a ricavare delle proprietà comuni a tutte le strade più corte, indipendentemente dal numero e dalla posizione delle città, e poi disegneremo la rete di strade in alcune situazioni semplici. Cosa potrebbe mai avere a che fare questo problema con le bolle di sapone? Lo scopriremo insieme!
Responsabili: Federico Butori, Cristian Sopio

Laboratorio 2: La matematica delle forme 

Sebbene siamo abituati a pensarla in termini di formule, numeri ed equazioni, la matematica viene anche utilizzata per descrivere forme ed oggetti nello spazio. In che modo possiamo distinguere tra una ciambella ed una palla? Ovvero, in che modo si descrive matematicamente un “buco”? Possiamo approcciare questo tipo di problemi utilizzando un computer? In questo laboratorio cercheremo una risposta a queste ed altre domande che costituiscono la base di una branca della matematica chiamata topologia, a partire da oggetti molto semplici costruiti a partire da punti e linee (i grafi).
Responsabile: Lorenzo Venturello

Laboratorio 3: Cosa sono i numeri di Betti?

I numeri di Betti associati a uno spazio topologico X possono essere definiti come la successione dei ranghi dell’omologia razionale di X. Cosa significa questa frase? Per rispondere faremo un cammino alla scoperta di quel ramo della matematica, la topologia, che studia proprietà profonde delle figure geometriche: capiremo il ruolo dei numeri di Betti, e impareremo a calcolarli in alcuni esempi e applicazioni.
Responsabile: Luca Bruni

Laboratorio 4: Poligoni regolari e poliedri

Sappiamo tutti che esistono poligoni regolari con un numero qualsiasi di lati. Si possono descrivere con precisione? Si possono “costruire”? Cosa vuol dire “costruirli”? Se non lavoriamo più nel piano ma nello spazio tridimensionale, il problema analogo è quello dell’esistenza di poliedri regolari (detti anche solidi platonici). Definiremo cosa intendiamo per poliedro regolare e dimostreremo che esistono solo 5 poliedri regolari: tetraedro, cubo, ottaedro, dodecaedro, icosaedro. Studieremo la struttura combinatoria dei poliedri, la loro “dualità” e il loro gruppo di automorfismi.
Responsabile: Ilaria Del Corso

Laboratorio 5: La matematica dei suoni

Come fa il nostro orecchio a distinguere il suono di un pianoforte da quello di una chitarra? Come si possono ricavare “al volo” le note e gli accordi di un pezzo musicale? È possibile rimuovere il rumore di fondo da una registrazione venuta male o prevedere il riverbero percepito in un’esecuzione musicale fatta in una cattedrale? Utilizzando proprietà di funzioni trigonometriche e di polinomi, assieme a strumenti ideati da alcuni matematici del passato quali Jean Baptiste Joseph Fourier e Carl Friedrich Gauss, introdurremo un modello matematico che rappresenti i suoni. Dopo aver presentato teoricamente questo modello, svolgeremo della sperimentazione in un laboratorio informatico, dove ascolteremo e manipoleremo suoni usando un computer e opportuni algoritmi. Riusciremo in questo modo a dare risposte alle domande in modo automatico e in tempo reale. Capiremo inoltre come creare artificialmente una melodia eseguita da un determinato strumento.
(Per seguire il laboratorio è preferibile avere un’alfabetizzazione informatica di base).
Responsabili: Paola Boito, Leonardo Robol

Laboratorio 6: Esplorare il sistema solare con la matematica.

Il sistema solare è formato da una grande varietà di corpi celesti, i quali si muovono simultaneamente nella stessa fetta di spazio dominata dall’attrazione gravitazionale del Sole. Ma se la gravità del Sole è così forte, perché i corpi celesti non ci cadono dentro? Inoltre, i pianeti si possono scontrare tra di loro? Per rispondere a queste domande, ricaveremo matematicamente come è fatta l’orbita (e quindi il moto) di un corpo nello spazio. Successivamente, analizzeremo vari corpi celesti del nostro sistema solare e cercheremo di capire alcune caratteristiche del loro moto. Per esempio, perché la Luna rivolge sempre la stessa faccia alla Terra? Perché ci sono dei buchi nella fascia principale degli asteroidi situata tra Marte e Giove? Vedremo come queste configurazioni non siano casuali, ma il risultato di evoluzioni lunghe miliardi di anni.
Responsabile: Giacomo Lari

Pin It
This website uses the awesome plugin.