Le partite di calcio si preparano e si discutono a colpi di dati. Per i goal c’è la distribuzione di Poisson. Ce ne parla Marco Menale per La Lente Matematica.
È ricominciato il campionato di serie A, da quest’anno in compagnia di una nuova Champions League. Assieme alle partite ricominciano le discussioni tra tifosi. Che sia in una trasmissione televisiva o al bar della colazione, sono numeri e dati a farla da padrone. E non solo tra i tifosi: squadre e allenatori si avvalgono di team di data analyst per le loro scelte. Poiché a contare nel calcio sono i goal, fatti e subiti, diversi dati si concentrano proprio su di loro. Qui arriva in aiuto la matematica, con la distribuzione di Poisson.
Partiamo dall’aspetto matematico. La distribuzione di Poisson, che deve il suo nome al matematico e statistico francese Siméon-Denis Poisson, è una distribuzione di probabilità discreta. Misura la probabilità che si verifichi un certo numero di eventi in un intervallo di tempo o spazio, quando questi eventi accadono in modo indipendente l’uno dall’altro e con una frequenza costante. In formule, sia \(\lambda>0\) la frequenza degli eventi, la probabilità che se ne verifichino \(n\) secondo la distribuzione di Poisson è
\[P_{\lambda}(n)=\frac{\lambda^n\, e^{-\lambda}}{n!}.\]
Torniamo al calcio. Supponiamo di conoscere la media goal a partita di una squadra. Allora, considerato come evento il goal segnato e \(\lambda\) la media, possiamo usare la distribuzione di Poisson per calcolare la probabilità che la squadra segni \(n\) di goal in una singola partita. Facciamolo con dati reali presi dallo scorso campionato. L’Inter campione d’Italia ha segnato \(89\) goal, con una media di \(2,34\). Così la distribuzione di Poisson associata (Figura 2), posto \(\lambda=2,34\), è
\[P(n)=\frac{2,34 ^n\, e^{-2,34}}{n!}.\]
Quindi, le probabilità con cui l’Inter segnava rispettivamente \(0,\, 1,\, 2\, 3\, 4\) goal a partita sono
\[
\begin{align*}
P(0) & \approx 0,0963\\
P(1)& \approx 0,2254\\
P(2)& \approx 0,2637\\
P(3)& \approx 0,2057 \\
P(4)& \approx 0,1203.
\end{align*}
\]
I valori più alti sono intorno alla media, come ci si aspetta. Per l’Inter era poco probabile (meno del \(10\%\) finire una partita senza segnare goal. A confronto, era più probabile che ne segnasse \(4\) di goal in una partita. In figura 3 è rappresentata la distribuzione di Poisson dei goal subiti dall’Inter, che erano in media \(0,58\). La forma è molto diversa se paragonata a quella dei goal fatti. Non c’è nessuna gobba, ma un rapido avvicinamento allo \(0\), ossia bassa probabilità di prendere goal. Infatti, è stato molto difficile segnare all’Inter nel passato campionato. Questi due dati aiutano a spiegare il perché della vittoria finale.
L’uso della distribuzione di Poisson presenta dei limiti modellistici. L’ipotesi di indipendenza degli eventi non è molto realistica: potrebbe essere più difficile segnare il primo goal in una partita che il quarto quando la difesa avversaria è già sotto la doccia. Tuttavia, come accade con altri parametri (tra cui l’xG), la distribuzione di Poisson può aiutare allenatori e staff nelle loro scelte. Ad esempio, osservare come cambia la forma della distribuzione nel corso della stagione può fornire suggerimenti su eventuali correttivi in corso d’opera.
Chi vuole divertirsi nel corso di questo campionato può costruire di volta in volta la distribuzione di Poisson dei goal della propria squadra, o delle altre, con i dati aggiornati di Opta Analyst.