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The Chemotaxis model

One of the most important self-organization process is the
Chemotaxis ( ταξις=arrangement, disposition).

In a collective motion of a population of micro-organisms (a single-cell
or a multicellular organism), a single cell which reaches a place where
it can consume food or reproduce emits a chemo-attractant signal
which attracts the rest of the population walk.

(a)

biased random walk of a cell
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The Keller-Segel system in the Euclidean space

There are several models for chemotaxis. Choosing a macroscopic
description of the population, considering uniquely the cell density
u ≥ 0 and the chemical concentration c ≥ 0 and assuming that

cells move randomly and are attracted by the chemical signal;
the chemical is produced by the cells themselves;
the population is conserved

a corresponding mathematical model is given by the density and
concentration balance equations [Keller-Segel, 1970]

ut = ∆u −∇ · (u∇c)

εct = ∆c + u − α c

ε, α non negative coefficients(if ε > 0 parabolic-parabolic system; if
ε = 0 elliptic-parabolic system) plus initial/boundary condition
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There is a huge quantity of literature on the mathematical analysis of
the Keller-Segel system (for review papers, see [Horstmann 2003],
[Hillen-Painter 2009]).
Nevertheless, several challenging issues are still open. Depending on
the space dimension, on ε ≥ 0 and on the initial mass

∫
u0(x)dx

different phenomena can occur . Roughly speaking :

dim 1: Solutions are global and bounded
dim 2: Threshold phenomenon for a critical value M of the initial
mass: global existence for

∫
u0(x)dx < M, possible blow-up for∫

u0(x)dx ≥ M.
dim 3: local existence and possible blowup in finite time for any
initial mass
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In [Borsche, Göttlich, Klar, Schillen 2014], the authors consider a
parabolic model for chemotaxis on network to simulate the behaviour
of the Physarum polycephalum (a hyperbolic model is studied in
[Guarguaglini-Natalini 2015])

A Keller-Segel system is introduced on each arc with some
transition conditions at the vertices;
The Keller-Segel system is discretized and numerical experiments
show that it is able to capture the behavior of the Physarium

Our aim is to study the well-posedness of the continuous Keller-Segel
system on the network.
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The network

V := {v1, . . . , vn} the finite set of vertices in RN

E := {e1, . . . ,em} the finite set of edges (curves in RN ) whose
endpoints are vertices
Γ := (V ,E) the finite connected network
each edges is parametrized by two homeomorphisms
Π±j : [0,1] 7→ R which give rise to two oriented arcs e±j
to each edge ej ∈ E is associated a positive weight κ(ej) > 0 (the
network is not homogeneous)
E(vi) := {j : ej is incident to vi ∈ V}
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Integral and derivatives on Γ

A function u : Γ→ R is a collection of m functions (uj)
m
j=1 defined

on the arcs, i.e. uj := u|ej

The derivative u′j (x) is always intended with respect to the
parametrization, i.e. (u ◦ Π±j )′(t) for x = Π±j (t) ∈ ej
At the vertices we defined the exterior normal derivative

∂uj

∂n
(I(aj)) = − lim

h→0+

(u ◦ Π±j )(h)− (u ◦ Π±j )(0)

h
∂uj

∂n
(T (aj)) = lim

h→0−

(u ◦ Π±j )(1 + h)− (u ◦ Π±j )(1)

h
with I(aj) and T (aj) the initial and terminal endpoint of aj resp.
Also the integrals are computed in the parameters, i.e.∫

Γ
u(x) dx =

m∑
j=1

κ(ej)

∫ 1

0
(u ◦ Π±j )(t) dt
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The Keller-Segel system on the network Γ

The Keller-Segel system

∂tu = ∇ · (∇u − u∇c)

ε ∂tc = ∆c + u − α c

translates into m systems (one for each edge ej )

∂tuj = ∂xxuj − ∂x (uj ∂xcj) on ej × (0,∞) , j = 1, . . . ,m,
ε ∂tcj = ∂xxcj + uj − α cj on ej × (0,∞) , j = 1, . . . ,m,

What about the conditions at the vertices?
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Boundary and transmission conditions

In the (boundary vertices) ∂Γ := {vi1 , . . . , vik} ⊂ V , 0 ≤ ik ≤ n, i.e.
vertices with a single incident arc, we assume that the fluid just
flows in or out. Hence on ∂Γ we consider Neumann conditions

∂uj

∂n
(t , vi) =

∂cj

∂n
(t , vi) = 0 , vi ∈ ∂Γ

The remaining vertices are the transition vertices VT := V \ ∂Γ
At the transition vertices we assume continuity of the solutions

uj(t , vi) = uk (t , vi), cj(t , vi) = ck (t , vi), j , k ∈ E(vi),

and the Kirchhoff conditions∑
j∈E(vi )

κ(ej)
∂uj

∂n
(t , vi) =

∑
j∈E(vi )

κ(ej)
∂cj

∂n
(t , vi) = 0.
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Remark
Continuity of the solutions and the Kirchhoff conditions are the
simplest conditions for the validity of the Maximum Principle for
linear differential operator on networks.
The transition conditions for u, c implies the conservation of the
total flux at the vertices. Indeed by the continuity of u at vertices
and the Kirchhoff conditions for u and c, we have

∑
j∈E(vi )

κ(ej)

[
∂uj

∂n
− uj

∂cj

∂n

]
(t , vi) = 0 , t > 0, i = 1, . . . ,n .

The transition conditions guarantee the conservation of the initial
mass, i.e. ∫

Γ
u(t , y) dy =

∫
Γ

u0(y) dy ∀t > 0

11 / 25



Remark
Continuity of the solutions and the Kirchhoff conditions are the
simplest conditions for the validity of the Maximum Principle for
linear differential operator on networks.
The transition conditions for u, c implies the conservation of the
total flux at the vertices. Indeed by the continuity of u at vertices
and the Kirchhoff conditions for u and c, we have

∑
j∈E(vi )

κ(ej)

[
∂uj

∂n
− uj

∂cj

∂n

]
(t , vi) = 0 , t > 0, i = 1, . . . ,n .

The transition conditions guarantee the conservation of the initial
mass, i.e. ∫

Γ
u(t , y) dy =

∫
Γ

u0(y) dy ∀t > 0

11 / 25



Remark
Continuity of the solutions and the Kirchhoff conditions are the
simplest conditions for the validity of the Maximum Principle for
linear differential operator on networks.
The transition conditions for u, c implies the conservation of the
total flux at the vertices. Indeed by the continuity of u at vertices
and the Kirchhoff conditions for u and c, we have

∑
j∈E(vi )

κ(ej)

[
∂uj

∂n
− uj

∂cj

∂n

]
(t , vi) = 0 , t > 0, i = 1, . . . ,n .

The transition conditions guarantee the conservation of the initial
mass, i.e. ∫

Γ
u(t , y) dy =

∫
Γ

u0(y) dy ∀t > 0

11 / 25



Summarizing we consider the Keller-Segel system

∂tuj = ∂yyuj − ∂y (uj ∂ycj) j = 1, . . . ,m,
ε ∂tcj = ∂yycj + uj − α cj j = 1, . . . ,m,

uj(0, y) = u0
j (y), cj(0, y) = c0

j (y) , j = 1, . . . ,m,

∂uj

∂n
(t , vi) =

∂cj

∂n
(t , vi) = 0 , vi ∈ ∂Γ

∑
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κ(ej)
∂cj

∂n
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uj(t , vi) = uk (t , vi), cj(t , vi) = ck (t , vi) j , k ∈ E(vi), vi ∈ VT .
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Our aim is to show the well-posedness of the previous problem. Since
the problem on each arc is 1-dimensional we expect to get global,
bounded solutions.
In R this result was proved in [Hillen-Potapov, 2004] by means of:

Decay estimates in time for the heat kernel in R
Duhamel formula for the solution of the Keller-Segel system
Careful application of interpolation inequalities in Sobolev space
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The Heat equation



∂tuj = ∂xxuj on (0,∞)× ej , j = 1, . . . ,m

uj (0, x) = fj (x) on ej , j = 1, . . . ,m

uj (t , vi ) = uk (t , vi ) if j , k ∈ E(vi ), vi ∈ V∑
j∈E(vi )

κ(ej )
∂uj
∂n (t , vi ) = 0 , vi ∈ V

(for simplicity assume that Γ has no boundary points).

The existence of a solution to the heat equation has been obtained in

Variational methods [Lumer 1980, Nicaise 1987];

Heat kernel [Roth, 1984];

Probabilistic methods [Freidlin-Wentzell, 1993];

Abstract semigroup approach [Mugnolo, 2007].

All these approaches are equivalent, but the explicit formula for the Heat
kernel in Roth is fundamental to obtain decay estimates
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The heat kernel formula

Paths and distance on networks
Ck (x , y) :=

{
C = (ej1 , . . . ,ejk ) : x ∈ ej1 and y ∈ ejk

}
,

k = 2,3, . . . , denotes the set of paths of length k such that x
belongs to the first arc and y to the last one
A geodesic path joining x to y on Γ is any path of minimum length
in ∪k≥2Ck (x , y).
L(x , y) ∈ N denotes the number of arcs of a geodesic path joining
x to y
The distance dC(x , y) between x and y along the path
C = (ej1 , . . . ,ejk ) is given by

(i) dC(x , y) = |(Π±j )−1(x)− (Π±j )−1(y)| if x , y ∈ ej ;
(ii) dC(x , y) = dC(x ,T (ej1 )) + dC(y , I(ejk )) + |C| − 2

ε(C) represents the total weight of a path C ∈ Ck
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The Heat kernel
For t > 0, x ∈ ei , y ∈ ej , define

H(t , x , y) = δi,j κ
−1(ei) G(t ,dC(x , y)) + L(t , x , y)

where
δi,j : the usual Kronecker’s delta function

G(t , z) = 1√
4π t

e−
z2
4t

L(t , x , y) =
∑

k≥L(x ,y)

∑
C∈Ck (x ,y) κ

−1(ei) ε(C) G(t ,dC(x , y))

The first term G is simply the restriction of the fundamental solution of
the heat equation on each edge of the network.
The second term L takes into account the instantaneous propagation
of the heat along all the possible infinite many paths joining x to y on
the network (in a path, a same arc can be passed through several
times).
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Theorem (Roth)
Let H be the heat kernel on the network Γ. Then

1 H is continuous on (0,∞)× Γ× Γ;
2 ∂tH(t , x , y), ∂yH(t , x , y) and ∂yyH(t , x , y) exist and are continuous

for all (t , x , y) ∈ (0,∞)× ej × ei , i , j = 1, . . . ,m
3 ∂tH(t , x , y) = ∂yyH(t , x , y) for all (t , x , y) ∈ (0,∞)× ej × ej ;
4 H(t , x , ·) satisfies the Kirchhoff condition at the vertices;
5 Since H is symmetric with respect to x , y ∈ Γ, i.e.

H(t , x , y) = H(t , y , x), all the previous properties hold with respect
to x;

6 For all f ∈ C0(Γ), (H(t) ∗ f )(y) :=
∫

Γ H(t , x , y)f (x)dx → f (y) for
t → 0+, uniformly with respect to y ∈ Γ.

17 / 25



Theorem (Roth)
Let H be the heat kernel on the network Γ. Then

1 H is continuous on (0,∞)× Γ× Γ;
2 ∂tH(t , x , y), ∂yH(t , x , y) and ∂yyH(t , x , y) exist and are continuous

for all (t , x , y) ∈ (0,∞)× ej × ei , i , j = 1, . . . ,m
3 ∂tH(t , x , y) = ∂yyH(t , x , y) for all (t , x , y) ∈ (0,∞)× ej × ej ;
4 H(t , x , ·) satisfies the Kirchhoff condition at the vertices;
5 Since H is symmetric with respect to x , y ∈ Γ, i.e.

H(t , x , y) = H(t , y , x), all the previous properties hold with respect
to x;

6 For all f ∈ C0(Γ), (H(t) ∗ f )(y) :=
∫

Γ H(t , x , y)f (x)dx → f (y) for
t → 0+, uniformly with respect to y ∈ Γ.

17 / 25



Theorem (Roth)
Let H be the heat kernel on the network Γ. Then

1 H is continuous on (0,∞)× Γ× Γ;
2 ∂tH(t , x , y), ∂yH(t , x , y) and ∂yyH(t , x , y) exist and are continuous

for all (t , x , y) ∈ (0,∞)× ej × ei , i , j = 1, . . . ,m
3 ∂tH(t , x , y) = ∂yyH(t , x , y) for all (t , x , y) ∈ (0,∞)× ej × ej ;
4 H(t , x , ·) satisfies the Kirchhoff condition at the vertices;
5 Since H is symmetric with respect to x , y ∈ Γ, i.e.

H(t , x , y) = H(t , y , x), all the previous properties hold with respect
to x;

6 For all f ∈ C0(Γ), (H(t) ∗ f )(y) :=
∫

Γ H(t , x , y)f (x)dx → f (y) for
t → 0+, uniformly with respect to y ∈ Γ.

17 / 25



Theorem (Roth)
Let H be the heat kernel on the network Γ. Then

1 H is continuous on (0,∞)× Γ× Γ;
2 ∂tH(t , x , y), ∂yH(t , x , y) and ∂yyH(t , x , y) exist and are continuous

for all (t , x , y) ∈ (0,∞)× ej × ei , i , j = 1, . . . ,m
3 ∂tH(t , x , y) = ∂yyH(t , x , y) for all (t , x , y) ∈ (0,∞)× ej × ej ;
4 H(t , x , ·) satisfies the Kirchhoff condition at the vertices;
5 Since H is symmetric with respect to x , y ∈ Γ, i.e.

H(t , x , y) = H(t , y , x), all the previous properties hold with respect
to x;

6 For all f ∈ C0(Γ), (H(t) ∗ f )(y) :=
∫

Γ H(t , x , y)f (x)dx → f (y) for
t → 0+, uniformly with respect to y ∈ Γ.

17 / 25



Theorem (Roth)
Let H be the heat kernel on the network Γ. Then

1 H is continuous on (0,∞)× Γ× Γ;
2 ∂tH(t , x , y), ∂yH(t , x , y) and ∂yyH(t , x , y) exist and are continuous

for all (t , x , y) ∈ (0,∞)× ej × ei , i , j = 1, . . . ,m
3 ∂tH(t , x , y) = ∂yyH(t , x , y) for all (t , x , y) ∈ (0,∞)× ej × ej ;
4 H(t , x , ·) satisfies the Kirchhoff condition at the vertices;
5 Since H is symmetric with respect to x , y ∈ Γ, i.e.

H(t , x , y) = H(t , y , x), all the previous properties hold with respect
to x;

6 For all f ∈ C0(Γ), (H(t) ∗ f )(y) :=
∫

Γ H(t , x , y)f (x)dx → f (y) for
t → 0+, uniformly with respect to y ∈ Γ.
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Corollary

For all f ∈ C0(Γ), the function

Pt f (y) = (H(t) ∗ f )(y) :=

∫
Γ

H(t , x , y)f (x)dx , (t , y) ∈ (0,∞)× Γ

with P0f = f is the unique continuous solution of the Cauchy problem

∂tuj = ∂xxuj on (0,∞)× ej , j = 1, . . . ,m

uj (0, x) = fj (x) on ej , j = 1, . . . ,m

uj (t , vi ) = uk (t , vi ) if j , k ∈ E(vi ), vi ∈ V∑
j∈E(vi )

κ(ej )
∂uj
∂n (t , vi ) = 0 , vi ∈ V
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The specific form of the transition conditions at the vertices

uj(t , vi) = uk (t , vi) j , k ∈ E(vi), i = 1, . . . ,n, t > 0∑
j∈E(vi )

κ(ej)
∂uj

∂n
(t , vi) = 0 i = 1, . . . ,n, t > 0

allows to write the solution of the heat equation in the integral form

Pt f (y) = (H(t) ∗ f )(y) :=

∫
Γ

H(t , x , y)f (x)dx , (t , y) ∈ (0,∞)× Γ

since in the integration by parts on the arcs the boundary terms
cancels with the conditions at the vertices.
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Proposition (Optimal decay estimates)
Let H be the heat kernel on Γ. Then,∫

Γ
H(t , x , y)dy = 1 , ∀ (t , x) ∈ Γ× (0,∞) ,

and there exist constants Ci > 0, i = 1, . . . ,4, such that for all t > 0 it
holds

sup
x∈Γ
‖H(t , x , ·)‖L1(Γ) ≤ C1 ,

‖H(t)‖L∞(Γ×Γ) ≤ C2(1 + t−1/2) ,

sup
x∈Γ
‖∂yH(t , x , ·)‖L1(Γ) ≤ C3(1 + t−1/2) ,

‖∂yH(t)‖L∞(Γ×Γ) ≤ C4(1 + t−1) .

(by simmetry the above properties holds changing x with y ).
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Integral solutions of Keller-Segel system
By Duhamel formula, we consider solutions of the Keller-Segel system
in integral form

u(t , y) = Ptu0(y)−
∫ t

0
P(t−s)[∂x (u(s)∂xc(s))](y)ds

c(t , y) = e−(α/ε)tP(t/ε)c0(y) +
1
ε

∫ t

0
e−(α/ε)(t−s)P((t−s)/ε) [u(s)](y)ds

where Pt is the semigroup generated by the heat equation on Γ, i.e. for
an integrable function f

Pt f (y) = (H(t) ∗ f )(y) :=

∫
Γ

H(t , x , y)f (x)dx , (t , y) ∈ (0,∞)× Γ

From now on we will refer to the previous formulas as the integral
solutions of the Keller-Segel system.
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The parabolic-parabolic Keller-Segel system (ε > 0)

Theorem (Local existence)

Assume u0 ∈ L∞(Γ), c0 ∈W 1,∞(Γ). Then, there exist
T = T (‖u0‖L∞(Γ), ‖∂xc0‖L∞(Γ), ε) > 0 and a unique integral solution
(u, c) of the Keller-Segel system with

u ∈ L∞((0,T ); C0(Γ)) , c ∈ L∞(0,T ; W 1,∞(Γ)) ,

satisfying the transmission conditions and the mass conservation.

The proof is based on a fixed point argument and makes use in a
crucial way of the decay estimates on the heat kernel

22 / 25



Since the time T depends only on the initial data, by means of a
continuation method we can prove that

Theorem (Global existence and positivity)

Assume u0 ∈ L∞(Γ), c0 ∈W 1,∞(Γ). Then for all T > 0 there exists a
solution (u, c) of the Keller-Segel system on the time interval [0,T ].
Moreover, if the initial data u0 and c0 are nonnegative, the solution
(u, c) is nonnegative.

23 / 25



In conclusion, the main points of our approach to well-posedness of
Keller-Segel system are

Heat kernel and integral formula for the heat equation on networks
Optimal decay estimates for the heat kernel
Duhamel formula for the inhomogeneous heat equation on
networks

In all the previous points the transmission conditions at the vertices
plays a crucial role.
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Conclusions
Existence and uniqueness of the solution to the
parabolic-parabolic Keller-Segel system in [0,T ] for any time
T > 0, but it is not excluded blow-up for T → +∞.
Existence and uniqueness of the solution to the elliptic-parabolic
Keller-Segel system in [0,∞)

Perspectives
Asymptotic behavior of the solution for T →∞ (existence of an
asymptotic profile has been observed numerically in
[Hillen-Potakov, 2004])
Convergence of the numerical scheme developed in [Borsche,
Göttlich, Klar, Schillen 2014] (slightly different transmission
conditions)
Behavior of the solutions with respect to the structural elements of
the network
Optimal decay estimates of the Heat kernel for other problems of
parabolic nature on networks.
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