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The Chemotaxis model

One of the most important self-organization process is the
Chemotaxis ( Ta&is=arrangement, disposition).

In a collective motion of a population of micro-organisms (a single-cell
or a multicellular organism), a single cell which reaches a place where
it can consume food or reproduce emits a chemo-attractant signal
which attracts the rest of the population walk.

(a)

biased random walk of a cell



The Keller-Segel system in the Euclidean space

There are several models for chemotaxis. Choosing a macroscopic
description of the population, considering uniquely the cell density
u > 0 and the chemical concentration ¢ > 0 and assuming that

@ cells move randomly and are attracted by the chemical signal;
@ the chemical is produced by the cells themselves;
@ the population is conserved

a corresponding mathematical model is given by the density and

concentration balance equations [Keller-Segel, 1970]
u=Au—-V-(uve)
ect=Ac+U—acC

e, a non negative coefficients(if ¢ > 0 parabolic-parabolic system; if
e = 0 elliptic-parabolic system) plus initial/boundary condition



There is a huge quantity of literature on the mathematical analysis of
the Keller-Segel system (for review papers, see [Horstmann 2003],
[Hillen-Painter 2009]).

Nevertheless, several challenging issues are still open. Depending on
the space dimension, on e > 0 and on the initial mass | up(x)dx
different phenomena can occur . Roughly speaking :

@ dim 1: Solutions are global and bounded
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There is a huge quantity of literature on the mathematical analysis of
the Keller-Segel system (for review papers, see [Horstmann 2003],
[Hillen-Painter 2009]).

Nevertheless, several challenging issues are still open. Depending on
the space dimension, on e > 0 and on the initial mass | up(x)dx
different phenomena can occur . Roughly speaking :

@ dim 1: Solutions are global and bounded

@ dim 2: Threshold phenomenon for a critical value M of the initial
mass: global existence for [ up(x)dx < M, possible blow-up for
[ up(x)dx > M.

@ dim 3: local existence and possible blowup in finite time for any
initial mass



In [Borsche, Géttlich, Klar, Schillen 2014], the authors consider a
parabolic model for chemotaxis on network to simulate the behaviour
of the Physarum polycephalum (a hyperbolic model is studied in
[Guarguaglini-Natalini 2015])
@ A Keller-Segel system is introduced on each arc with some
transition conditions at the vertices;
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In [Borsche, Géttlich, Klar, Schillen 2014], the authors consider a
parabolic model for chemotaxis on network to simulate the behaviour
of the Physarum polycephalum (a hyperbolic model is studied in
[Guarguaglini-Natalini 2015])
@ A Keller-Segel system is introduced on each arc with some
transition conditions at the vertices;
@ The Keller-Segel system is discretized and numerical experiments
show that it is able to capture the behavior of the Physarium
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Our aim is to study the well-posedness of the continuous Keller-Segel
system on the network.



The network

@ V:={w,...,v,} the finite set of vertices in RV

@ E:={ey,...,en} the finite set of edges (curves in RN) whose
endpoints are vertices

@ [ := (V, E) the finite connected network

@ each edges is parametrized by two homeomorphisms
I‘Ij%L : [0, 1] — R which give rise to two oriented arcs eji

@ to each edge ¢; < E is associated a positive weight x(e;) > 0 (the
network is not homogeneous)

@ E(v;):=1{j : gisincidentto v; € V}

nodes (or vertices)

\

edges
(or links)



Integral and derivatives on I

@ Afunction u: T — Ris a collection of m functions (u;)”; defined
on the arcs, i.e. u; == up_
)
@ The derivative u(x) is always intended with respect to the
parametrization, i.e. (uo M) (t) for x = M(t) € ¢
@ At the vertices we defined the exterior normal derivative

ou; _ (uonF)(h) — (ueNF)(0)
an @) == Jim ————p——

ou; (ol (1 +h) = (uoNFH)(1)
ainl(T(aj)) B hlgg— l h :

with /(&;) and T(g;) the initial and terminal endpoint of a; resp.
@ Also the integrals are computed in the parameters, i.e.
m

1
/ru(x) dx:Zn(ej)/o (uo ME)(t) o

j=1



The Keller-Segel system on the network I

The Keller-Segel system

oiu=V-(Vu—uve)
edic=Ac+U—acC

translates into m systems (one for each edge ¢;)

OtUj = OxxUj — Ox(U; OxC;) onegx(0,00), j=1,...,m,
€ 0tCj = OxxCj + Uj — a G onegx(0,00), j=1,...,m,

What about the conditions at the vertices?



Boundary and transmission conditions

@ In the (boundary vertices) oI := {v;,,...,v;,} C V,0 < ik < n,i.e.
vertices with a single incident arc, we assume that the fluid just
flows in or out. Hence on 9I' we consider Neumann conditions

a;

an
an(bvi) =5,

(t,V,'):O, vieor

@ The remaining vertices are the transition vertices Vr := V' \ or
At the transition vertices we assume continuity of the solutions

ui(t, vi) = uk(t, vi), ci(t,vi) = ck(t,vi), J, ke E(v),

and the Kirchhoff conditions

ou; oc;
> we) 2ty = 3 we) 2Lt v) =0,
JEE(v) JeE(v)
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Remark
@ Continuity of the solutions and the Kirchhoff conditions are the
simplest conditions for the validity of the Maximum Principle for
linear differential operator on networks.
@ The transition conditions for u, ¢ implies the conservation of the
total flux at the vertices. Indeed by the continuity of u at vertices
and the Kirchhoff conditions for u and ¢, we have

JEE(vi)

@ The transition conditions guarantee the conservation of the initial
mass, i.e.

/u(t,y)dy:/uo(y)dy vt >0
r r




Summarizing we consider the Keller-Segel system

O = OyyUj — Oy (U; Oy cy) j=1,....,m,
E@thzayij—i-Uj—aCj j=1,...,m,
u(0,y) = B(y), ¢(0,y) =cP(y), j=1,....m,
ou; ac

8_/71(t’ Vi) = 8_r;(t’ vi) =0, v; € Ol

ou; ¢
> /{(ej)a—r;(t, V)= > H(ej)a—r;(t, v)=0, vie Vr,
JEE(v) JEE(v)
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Summarizing we consider the Keller-Segel system

Oty = dyyuj — 9y(u; 9y ;) j=1,....,m,
€8th:8yij+Uj—aCj j:17_”7m7
u(0,y) = B(y), ¢(0,y) =cP(y), j=1,....m,
ou; ac;

8_/71(t’ Vi) = 8_r;(t’ vi) =0, v, € or

ou; oc;

> n(ej)a—rj(t, V)= > H(ej)a—n/(t, vi)=0, vie Vr,

JEE(v)) JEE(Vi)

ui(t, vi) = uk(t, vi), ¢i(t, vi) = ck(t, vi) ik € E(v), vi € Vr.



Our aim is to show the well-posedness of the previous problem. Since

the problem on each arc is 1-dimensional we expect to get global,
bounded solutions.

In R this result was proved in [Hillen-Potapov, 2004] by means of:
@ Decay estimates in time for the heat kernel in R
@ Duhamel formula for the solution of the Keller-Segel system
@ Careful application of interpolation inequalities in Sobolev space



-
The Heat equation

Otlj = Oxxj on(0,0) x g, j=1,....,m
u;(0, x) = fi(x) oneg,j=1,....m
ui(t, vi) = uk(t, vi) ifjyk e E(vi), vie V
Y w(e)2(tv)=0, vieV
JEE(V)

(for simplicity assume that I has no boundary points).
The existence of a solution to the heat equation has been obtained in
@ Variational methods [Lumer 1980, Nicaise 1987];
@ Heat kernel [Roth, 1984];
@ Probabilistic methods [Freidlin-Wentzell, 1993];
@ Abstract semigroup approach [Mugnolo, 2007].

All these approaches are equivalent, but the explicit formula for the Heat
kernel in Roth is fundamental to obtain decay estimates



The heat kernel formula

Paths and distance on networks
® Ck(x,y):={C=(ej,...,6,) : Xxceg,andyc e},
k =2,3,..., denotes the set of paths of length k such that x
belongs to the first arc and y to the last one
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The heat kernel formula

Paths and distance on networks
® Ck(x,y):={C=(ej,...,6,) : Xxceg,andyc e},
k =2,3,..., denotes the set of paths of length k such that x
belongs to the first arc and y to the last one
@ A geodesic path joining x to y on I is any path of minimum length
in Ux>2Ck (X, Y).
@ L(x,y) € Ndenotes the number of arcs of a geodesic path joining
xtoy
@ The distance d¢(x, y) between x and y along the path
C=(ej,...,e)is given by
o (i) de(x.y) = [(M") " (x) = (M) "Wl if x, y € &;
o (i) de(x, y) = dc(x, T(ey)) + de(y. I(ej)) +1Cl -2
@ =(C) represents the total weight of a path C € Ci
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e G(t,2) = ﬁef%

The first term G is simply the restriction of the fundamental solution of
the heat equation on each edge of the network.

The second term L takes into account the instantaneous propagation
of the heat along all the possible infinite many paths joining x to y on
the network (in a path, a same arc can be passed through several
times).
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22
o G(t,2)= —e @

Vart
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Theorem (Roth)
Let H be the heat kernel on the network T'. Then
@ H is continuous on (0,00) x I x T';
Q 0:H(t,x,y), 0yH(t, x,y) and d,yH(t, x, y) exist and are continuous
forall (t,x,y) € (0,00) x gj x €, i,j=1,...,m
Q OH(t, x,y) = 0y H(t,x,y) forall (t,x,y) € (0,00) x & x €;
Q H(t, x,-) satisfies the Kirchhoff condition at the vertices;

© Since H is symmetric with respectto x,y €T, i.e.
H(t, x,y) = H(t,y, x), all the previous properties hold with respect
to x;

Q Forallfe COT), (H(1) = [r H(t, x, y)f(x)dx — f(y) for
t — 0T, uniformly with respect to yerl.




Corollary
For all f € C°(T), the function

Pif(y) = (H(t) « f)(y) :Z/FH(f,X,Y)f(X)dX, (t,y) € (0,00) x T

with Pyf = f is the unique continuous solution of the Cauchy problem

OtUj = OxxUj on(0,00) x e, j=1,....m
u;(0, x) = fi(x) onej,j=1,....m
ui(t, vi) = uk(t, vi) ifj,k € E(v;), vie V

Y w(e)2(tv)=0, vieV
JEE(v)




The specific form of the transition conditions at the vertices

ui(t, vi) = uk(t,vi) LkeE(W),i=1,...,n, t>0
0 .

3 (e,)au/(t V) =0 i=1,....nt>0

JEE(W)

allows to write the solution of the heat equation in the integral form

Pif(y) = (H(t) « £)(y) 1=/rH(T,X,Y)f(X)dX, (t,y) € (0,00) x T

since in the integration by parts on the arcs the boundary terms
cancels with the conditions at the vertices.



Proposition (Optimal decay estimates)
Let H be the heat kernel on I'. Then,
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Proposition (Optimal decay estimates)
Let H be the heat kernel on I'. Then,

/H(t,x,y)dy=1, v (t,x) €T x (0,00).
r

and there exist constants C; > 0,/ =1,...,4, such thatforall t > 0 it
holds

sup [|[H(t, X, )ll1ry < Cr,

xerlr

IH() | ioo(rxry < Co(1 + 17/2),
sup [|9y H(t, X, |1y < Cs(1 +t7172),
xel

10y H(t) || oo (rxry < Ca(1 +1771).

(by simmetry the above properties holds changing x with y).




Integral solutions of Keller-Segel system
By Duhamel formula, we consider solutions of the Keller-Segel system
in integral form

u(t.y) = Py / Pri_o)[0x(u(8)0:0(s))]|(y)ds

1

ot,y) = e /NPy () + - /0 e IANIP g [u(s)](v)d5

where P; is the semigroup generated by the heat equation on T, i.e. for
an integrable function f

Pif(y) = (H(t) « £)(y) 1=/rH(T,X,Y)f(X)dX, (t,y) € (0,00) x T

From now on we will refer to the previous formulas as the integral
solutions of the Keller-Segel system.



The parabolic-parabolic Keller-Segel system (¢ > 0)

Theorem (Local existence)

Assume u® € L>=(T), ¢® € W(T'). Then, there exist
T= T(||u°||Loo(r), ||8Xc°||Loo(r), e) > 0 and a unique integral solution
(u, c) of the Keller-Segel system with

uel=(0,T);Co%r)), cel>®0,T, W),

satisfying the transmission conditions and the mass conservation.

The proof is based on a fixed point argument and makes use in a
crucial way of the decay estimates on the heat kernel



Since the time T depends only on the initial data, by means of a
continuation method we can prove that

Theorem (Global existence and positivity)

Assume u° € L>(T), c® € W'(T"). Then for all T > 0 there exists a
solution (u, c) of the Keller-Segel system on the time interval [0, T].
Moreover, if the initial data u® and c® are nonnegative, the solution
(u, c) is nonnegative.
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In conclusion, the main points of our approach to well-posedness of
Keller-Segel system are
@ Heat kernel and integral formula for the heat equation on networks
@ Optimal decay estimates for the heat kernel
@ Duhamel formula for the inhomogeneous heat equation on
networks

In all the previous points the transmission conditions at the vertices
plays a crucial role.
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Conclusions

@ Existence and uniqueness of the solution to the
parabolic-parabolic Keller-Segel system in [0, T] for any time
T > 0, but it is not excluded blow-up for T — +oc.
@ Existence and uniqueness of the solution to the elliptic-parabolic
Keller-Segel system in [0, o)
Perspectives

@ Asymptotic behavior of the solution for T — oo (existence of an
asymptotic profile has been observed numerically in
[Hillen-Potakov, 2004])

@ Convergence of the numerical scheme developed in [Borsche,
Gaéttlich, Klar, Schillen 2014] (slightly different transmission
conditions)

@ Behavior of the solutions with respect to the structural elements of
the network

@ Optimal decay estimates of the Heat kernel for other problems of
parabolic nature on networks.



